t-Butylation of 5-Substituted Tetrazoles

Ronald A. Henry

Chemistry Division, Code 60505, Naval Weapons Center, China Lake, California 93555

Received November 14, 1975

J. Heterocyclic Chem., 13, 391 (1976).

In the course of other work, a need arose for a method to block the 1- or 2-position on the tetrazole ring, prior to reaction on substituents at the 5-position, to be followed by an easy, uncomplicated removal of the protective blocking group. Although this can be accomplished through N-benzylation with subsequent removal of this group by catalytic debenzylation over Pd (1), such an approach was not a suitable solution to this problem. It was found that the desired result could be realized by making use of the 1- or 2-t-butyl derivatives; the t-butyl group can be readily removed by dissolving the compound in concentrated sulfuric acid, a medium in which the tetrazole ring is moderately stable. 1-t-Butyl-5-phenyltetrazole was earlier prepared (2) by the thermal decomposition-rearrangement of C₆H₅C(N₃)₂C(CH₃)₃, which in turn was made from the corresponding dichloro compound and sodium azide. This method obviously has very restricted utility.

A simpler, more general procedure, which gives satisfactory yields (50-100%) of the mixed 1- and 2-isomers, is based on Vowinkel's method (3) for t-butylation of phenols: neat t-butyl alcohol and dicyclohexylcarbodimide are condensed in the presence of cuprous chloride; this product and the 5-substituted tetrazole then react in dichloromethane to give the poorly soluble N,N'-dicyclohexylurea and the soluble t-butylated tetrazoles. Yields and properties of several compounds made in this manner are summarized in Table I.

EXPERIMENTIAL

The following procedure is representative. Dicyclohexylcarbodiimide (30.6 g., 0.15 mole), t-butyl alcohol (12.4 g.), and cuprous chloride (300 mg.) were stirred under a calcium chloride drying tube for 5 days at room temperature. This reaction product was diluted with 175 ml. of dichloromethane, cooled to

Table I

1- and 2-t-Butyl 5-Substituted Tetrazoles

Position of t-butyl group	R	Formula	M.p., °C (b.p., °C, press)	Recrystallization solvent	% Yield	% C (theory)	Analysis % H (theory)	% N (theory)	% X (theory)
1	NH ₂	C5H11N5	193-194	2-propanol	40	42.26	7.72	50.03	
$\overset{1}{2}$	NH ₂	$C_5H_{11}N_5$	116-117	cyclohexane (a)	58	42.59	7.46	49.87	
-	. 1112	03111113		* .		(42.53)	(7.86)	(49.61)	
1	C.H.	$C_{11}H_{14}N$	108-109 (b)	cyclohexane	15	65.26	6.90	27.81	
2		$C_{11}H_{14}N$	$(90-100, 5 \times 10^{-4} \text{ mm})$, <u></u>	59	65.12	7.19	27.91	
2	6115	611114.1	(70-100, 5 x 10)			(65.32)	(6.98)	(27.70)	
1	SCH.	C ₆ H ₁₂ N ₄ S	92-93	n-hexane	19	41.91	7.05	32.58	18.52
$\overset{1}{2}$	SCH ₃		72-70		42	41.81	6.95	32.45	18.48
2	зспз	G611121145				(41.85)	(7.02)	(32.54)	(18.58)
1	Cl	C ₅ H ₉ ClN ₄	114-115	cyclohexane	21	37.16	5.62	35.10	22.08
1					30	37.54	5.68	34.77	21.98
2	Cl	C ₅ H ₉ ClN ₄	$(25, 1\mu)$		30	(37.39)	(5.65)	(34.89)	(22.08)

(a) Easily sublimed at 110-120°, 25 mm. (b) Reported reference 2, 102°.

5° and treated over 30 minutes with 21.8 g. (0.15 mole) of dried 5-phenyltetrazole. Since the reaction was exothermic, cooling was required to keep the temperature 5-10°. After stirring for 30 minutes more at 5°, the thick slurry was allowed to warm to 25° and stirred for 20 hours. The solid was then removed by filtration and washed twice with 50-ml. portions of dichloromethane. (Extraction of this solid with aqueous sodium hydroxide to remove 8.9 g. of unreacted 5-phenyltetrazole left 32.3 g. of dicyclohexylurea, m.p. 230°.)

The combined dichloromethane solutions were shaken with 100 ml. of water and enought 30% aqueous sodium—hydroxide to adjust the pH to the phenolphthalein endpoint (1.4 g. more of 5-phenyltetrazole removed), separated, washed with 100 ml. of water, dried over anhydrous sodium sulfate, and evaporated; 15.4 g. of oil plus solid. This crude product was slurried with 60 ml. of n-pentane and 30 ml. of dichloromethane, filtered from more of the urea, diluted with 100 ml. of pentane and chilled first at 5°, then at -15°, for several days. The crystals of the 1-isomer (2.8 g., m.p. 100-105°) were removed; two recrystallizations from cyclohexane raised the m.p. to 108-109°. Evaporation of the pentane solution left 10.7 g. of oil which was distilled.

In the case of the 5-amino compound the reaction solvent was

a 1:1 mixture of tetrahydrofuran-dichloromethane; benzene was used as the solvent for separating the 1-isomer (poorly soluble) from the 2-isomer (readily soluble).

Structures are assigned to the isomers on the basis that the 1-isomers are generally higher melting and less soluble than the corresponding 2-isomers (4).

Dealkylation of 1- and 2-t-Butyl-5-phenyltetrazole.

Heating 0.3 g. of unseparated, mixed isomers with 1 ml. of concentrated sulfuric acid on the steam bath for 2 hours (gas evolution), diluting with 8 ml. of water, cooling to 5°, filtering, washing and drying gave 0.21 g. (98%) of base soluble material, m.p. 213-215°. The extent of dealkylation was only about 12% after 3 hours at 25°.

REFERENCES AND NOTES

- (1) R. A. Henry, W. G. Finnegan, and E. Lieber, J. Am. Chem. Soc., 76, 2895 (1954).
 - (2) G. Schroeter, Chem. Ber., 44, 1202 (1911).
 - (3) E. Vowinkel, ibid., 99, 1479 (1966).
 - (4) L. Huff and R. A. Henry, J. Med. Chem., 13, 777 (1970).